Heat Pipe Mediated Control of Fast and Highly Exothermal Reactions
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Introduction
—_nTR O% %O A TN ) e Long latency period of 15 seconds, E_, =89 kJ mol? [
N N + /S\ PN > N-4+ N EtSO4 |
\—/ O O \—/ e Very fast and highly exothermal, @ AH =130 kJ molt [

(1) (2) (3) e Second order kinetics [

The synthesis of [EMIM]EtSO, (1-ethyl-3-methylimidazolium ethyl-sulfate) (3) from the respective reactants 1-methyl-imidazole (2) and diethylsulfate (3) suffers from the highly
exothermal and self-acceleration behavior of this reaction 12, Recently we investigated the applicability of heat pipes for cooling highly exothermal reactions 4. Heat pipes are
advantageous due to their fast dynamic cooling and heating behavior. By heating the reactor via heat pipes connected to an external heat source (hot air stream), the reaction can
be stabilized inside of the reactor. The reaction becomes self-stable (at 100°C), but due to the dynamic cooling behavior of the heat pipes the temperature at the hot end of the heat
pipes is remarkably higher depending on the reaction heat release.
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® Stepwise increasing of the reactor temperature by external heat source yields to
an optimal operating temperature.

® The best product quality results in section I, Ill, VII and VIII corresponding to the \V, \/
lowest temperature in the collecting basin. In section IV, V and VI coloration ' ?
occurs. In | and IX impurities appear. O o0 100
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e Uncontrolled reaction in the collecting basin without external heating can be
avoided. 1204
e During heating via the heat pipe system the temperature curves shows typically " 1004
characteristics (right). )
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® The highest temperature is present in the withdrawal channel and fall below the =
temperatures in the micro channels during permanently heating (intercepts of blue 60d
line in a).
¢ Finally the temperature in channel 4 exceeds all temperatures. The reaction is 40+~ /A
shifted into the first micro channels (intercepts of orange line in b). oy m—
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.................. .................. .................. .................. ® The used set-up allows a self- mediated control of highly exothermal
| | | | | | | reactions.

e After stepwise heating of the
reactor, the optimal oper-
ating temperature can be
figured out by plotting the
outlet temperature as a
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function of the operating ol | o we—® T T e  Due to optimization of operating temperature of 85-110°C best product
temperature. 1 ~_opgmal quality was achieved.
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oemperatee . | e The final product appears as a clear non-colorized liquid indicating that no
20 4 60 80 100 120 140 160 hot-spots occur inside the reactor.
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