Petasis Olefination in a Continuous Flow Microwave Reactor: exo-Glycals from Sugar-Lactones

JOHANNES GUTENBERG UNIVERSITÄT MAINZ

Stefan Koch, Holger Löwe and Horst Kunz Johannes Gutenberg-Universität Mainz, Institut für Organische Chemie, Duesbergweg 10-14, 55128 Mainz, Germany, Tel.: + 49 6131 3925874, e-mail: kochst@uni-mainz.de

Introduction

Owing to their distinct nucleophilic reactivity, enol ethers and, in particular, *exo*-glycals are considered interesting synthons for further conversion, as for example to spiroketals¹ or C-glycosides². Commonly applied olefination reactions, e.g. Wittig-, Horner-, Julia- or Peterson-olefination³, require basic reaction conditions not applicable to the conversion of carboxylic esters to enol ethers. The Tebbe olefination⁴ is useful for the synthesis of enol ethers from esters. However, the required reagent is very sensitive to moisture. In contrast, the Petasis olefination⁵ of esters not only provides non-basic conditions, the reagent dimethyltitanocene **1** dissolved in toluene/THF also is stable towards moisture and air. It can be stored at + 4 °C over a longer period without decomposition⁶. Upon heating the molecule eliminates methane and forms the active titan carbenoide species **2**, which can react with the carbonyl compound in a cycloaddition reaction to form the more or less stable titanacycle **3**. After cycloreversion the olefinated product is released.

Reaction under batch conditions

 Substrate and reagent are dissolved in toluene/THF and heated in the dark under inert atmosphere at 65-80 °C for several hours

Preparative application

- Glucose-derived building block 6 reacts remarkably faster under similar conditions
 - \rightarrow complete conversion already reached after 5.67 min (at 1.5 mL/min)
- Methane-elimination to form the reactive species starts at about 65 °C and is the rate-limiting step⁷

Increase of the temperature should strongly enhance the reaction rate limited by the boiling point of THF of 66 °C under atmospheric pressure.

Continuous flow microwave reactor under pressure (8 bar)

 \rightarrow Optimization of crucial parameters with small amount of chemicals possible

Continuous flow setup

- HPLC pump for delivering solvents and reactants
- Sample loop: capillaries (PTFE, 3.2 mm OD, 1.6 mm ID), total volume 6 mL
- Flow reactor (total volume 8.5 mL)
- Microwave oven for heating the reaction mixture
- Pressure relief valve to ensure the appropriate pressure

- The formation of **2** by α -elimination must be completed very fast in both cases
- Contrary to the assumptions under batch conditions, the rate determining step must be the bimolecular reaction of **2** with the substrate
- Higher concentrations = faster reaction
 - → remarkably accelerated conversion by increasing the Petasis reagent concentration from 0.18 M to 0.46 M
- Lowering the reaction time in the best cases down to only 2.8 min

Reaction under continuous flow conditions

 The olefination reaction can monitored by NMR after each run as illustrated for the galactose-derived sugar-lactone 4

- Preparative application of the continuous flow reaction even on gram-scale
- Scale-up by simply increasing the operation time of the reactor
- No changes regarding conversion or yield

Summary

The olefination of complex sugar-derived lactones to *exo*-glycals was achieved under continuous flow conditions. This procedure allowed an optimization of the conversion by regulation of the residence time and the concentration on milligram-scale, before the ready scale-up of the reaction to a gram-scale production. It can be concluded from these results, that micro reactors are also efficient in preparative microwave-assisted conversions of other sensitive carbonyl substrates under continuous flow conditions.

References

- (1) Brand C.; Rauch, G; Zanoni, M; Dittrich, B; Werz, D.B. J. Org. Chem., **2009**, 74, 8779 and literature cited therein.
- (2) Woodward, H.; Smith, N.; Gallagher, T. Synlett, **2010**, 869.
- (3) (a) Maryanoff, B. E.; Reitz, A. B. Chem. Rev. 1989, 89, 863–927, (b) Mikolajczyk, M.; Balczewski, P. New Aspects in Phosphorous Chemistry II; Springer Berlin, Heidelberg, 2003; 161-214, (c) Blakermore, P. R. J. Chem. Soc., Perkin Trans. 1, 2002, 2563-2585; (d) van Staden, L.F.; Gravestock, D.; Ager, D. J. Chem. Soc. Rev., 2002, 31, 195-200.
- (4) Tebbe, F. N.; Parshall, G. W.; Reddy, G. S. *J. Am. Chem. Soc.*, **1978**, 100, 3611.
- (5) Petasis, N. A.; Bzowej, E. I. *J. Am. Chem. Soc.* **1990**, 112, 6392; (b) Petasis, N. A.; Patane, M. A. *Tetrahedron Lett.* **1990**, *31*, 6799; (c) Petasis, N. A.; Lu, S.-P. *Tetrahedron Lett.* **1996**, *37*, 141; (d) Csuk, R.; Glänzer, B.I. *Tetrahedron* **1991**, 47, 1655. e) Hartley, R. C.; McKiernan, G. J. *J. Chem. Soc., Perkin Trans. 1*, **2002**, 2763–2793. (f) Hartley, R. C.; Ji, J. F.; Main, C. A.; McKiernan, G. J. *Tetrahedron*, **2007**, *63*, 4825-4864.
- (6) (a) Payack, J. F.; Hughes, D. L.; Cai, D. W.; Cottrell, I. F.; Verhoeven, T. R. Org. Prep. Proc. Int., 1995, 27, 707; (b) Payack, J. F.; Huffman, M. A.; Cai, D. W.; Hughes, D. L.; Collins, P. C.; Johnson, B. K.; Cottrell, I. F.; Tuma, L. D. Org. Process Res. Dev., 2004, 8, 256.
- Hughes, D. L.; Payack, J. F.; Cai, D. W.; Verhoeven, T. R.; Reider, P. J. Organometallics, 1996, 15, 663. b) Meurer, E. C.;
 Santos, L. S.; Pilli, R. A.; Eberlin, M. N. Org. Lett. 2003, 5, 1391-1394.
- (8) Gallagher, T; Cook, M. J.; Declan, W. F. *Tetrahedron Lett.* **2005**, *46*, 297–300