Paramagnetic Ionic Liquids as "Liquid Fixed-Bed" Catalysts in Flow Applications

UNIVERSITÄT MAINZ

JOHANNES GUTENBERG

Viktor Misuk, Denis Breuch and Holger Löwe

Johannes Gutenberg-University Mainz, Institute of Organic Chemistry, Duesbergweg 10-14, 55128 Mainz, Germany, Tel.: + 49 6131 3927050, e-mail: loewe@uni-mainz.de; misukv@uni-mainz.de

Introduction

The main drawback of homogeneous catalysis is the separation of products from the catalyst. Therefore two or multi-phase systems are used to keep the catalyst in and the reactants and/or products in separate phases. The reaction takes place at the phase boundary of the two immiscible liquids. Usually between an aqueous- and an organic liquid. Since a couple of years transition metal based ionic liquids are under investigation[1]. The chemical and thermal stability as well as the magnetic properties of e.g. [BMIM]FeCl₄ are remarkable [2,3]. Imidazolium-based ferrochlorates are of interest due to their low-cost preparation procedure and high Lewis-acidity. Absorption spectroscopy (VIS) indicate that the reason for the magnetic properties of this compound is provided by high-spin. FeCl₄- anions. The magnetic susceptibility of 40.6 x 10⁻⁶ emu g⁻¹ was determined by SQUID measurements[4]. Due to the preparation conditions an equilibrium of different liquid ferrochlorates appears, mostly [BMIM]FeCl₄ and [BMIM]Fe₂Cl₇, determined by Moesbauer spectroscopy [5]. Magnetic forced manipulation of such molecules is strongly restricted by the magnetic susceptibility of both, the magnetic fluid and the magnet, and also a function of their proximity respectively. It is obvious, that the twofold properties of [BMIM]Fe₂Cl₇, hard Lewis acidity and paramagnetic behavior, combined with flow chemistry in confined space, i.e. within micro- or mesostructured reactors opens up numerous unusual applications. A promising application reported here is the combination of a magnetic ionic liquid catalyst (MILC) in a micro/meso-sized channel to form a liquid fixed-bed (LFB) and a reactant mixture flow through, an analogue to common heterogeneous catalysis.

Reference Reaction

Solid wall free processing

 Every droplet has a diameter of about 500 μm and therefore can be considered as

solid-wall-free micro reactor

- Due to the magnetically fixed symmetric LFB the droplets do not touch the glass walls of the reactor
- The reaction chamber is not in the scale of a microreactor
- The reaction mixture and catalyst are immiscible so the reaction kinetics ist strongly connected to the interfacial area and diffusion inside the droplet

Regular droplet flow offers a specific phase boundary of nearly 10000m²m⁻³

Paramagnetic Liquid

- The permanent magnetic moment of the molecule arises from unpaired electrons
- Every angular momentum of a electron is connected with a magnetic moment

•
$$\mu_s = -\frac{e}{m_e} \mathbf{s}$$
 $\mu_l = -\frac{e}{2m_e} \mathbf{l}$

μ: magnetic moment, **s**: spin, **l**: orbital angular momentum *e* : elementary charge, m_e : elektron mass

Paramagnetic liquids are functional ionic liquids composed of magneto active metal complex anions

Results

The magneto active centers in the liquid are isolated from each other and the ionic liquid behaves simply paramagnetic

- Response of $[BMIM]Fe_2CI_7$ to a strong external magnetic field
- Temperature dependence of the susceptibility can be described with the Curie-Law

Setup

Summary

- The esterification reaction described here is known as a batch reaction [6]
- A two-phase system of pure [BMIM]Fe₂Cl₇ and a reactant solution was used
- The catalyst is a paramagnetic ionic liquid
- The reaction mixture was delivered as micro droplets into a magnetically fixed catalyst bed
- The concentration of [BMIM]Fe₂Cl₇ can be assumed as infinite.

Observed shaping of the MILC inside the cavity under magnetic force. Single-sided mounted magnet gave a droplet-like shape with open spaces at the upper edges (left). A filled cavity appeared by applying two magnets on the opposite sides (right)

- A yield of 78.5% was achieved within 1.3 seconds
- The next step will be the shift from single droplet formation to a multi-stream, at least to generate dispersions within a fixed bed of a liquid catalyst.

References

- Del Sestro, R. E., McCleskey, T. M., Burrell, A. K., Baker, G. A., Thompson, J. D., Scott, B. L., Wilkes, J. S., Williams, [1] P.; "Structure and magnetic behavior of transition metal based ionic liquids", Chem. Comm. (2008) 447-449.
- Lee, S. H., Ha, S. H., Ha, S. S., Jin, H.-B., You, C.-Y., Koo, Y.-M.; "Magnetic behavior of mixture of magnetic ionic [2] *liquid [bmim]FeCl₄ and water*", J. Appl. Phys. **101** (2007) 09J102.
- Okuno, M., Hamaguchi, H.; "Magnetic manipulation of materials in a magnetic ionic liquid", Appplied Physics Letters [3] **89** (2006) 132506
- Hayashi, S., Hamaguchi, H.; "Discovery of magnetic ionic liquid [bmim]FeCl₄", Chem. Lett. **33**, 12 (2004) 1590-1591 [4]
- [5] Csihony, S., Mehdi, H., Homonnay, Z., Vertes, A., Farkas, Ö., Horvath, I. T.; "In situ spectroscopic studies related to the mechanism of the Friedel-Crafts acetylation of benzene in ionic liquids using AICl₃ and FeCl₃", Dalton Transactions, 5 (2002) 680-685
- Wang, D.-S., Li, G.-Y., Peng, Y.-Q.; "Chloroferrate(III) ionic liquid as recyclable catalyst for the acetylation of [6] alcohols and phenols and for 1,1-diacylation of aldehydes", J. Chin. Chem. Soc 56 (2009) 834-838