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Continuous Solvent Stripping 

with a Modified Micro-structured Device

Chemistry in micro-flow lacks from feasible separation procedures devices, especially for distillation and rectification. To achieve a nearly complete separation of two fluids, the

evaporation/condensation step must be performed repeatedly within long distillation columns close to equilibrium conditions. This process is characterized by two important values: the

number of transfer units (NTU) and the height equivalent to one theoretical plate (HETP). For conventional distillation procedures the dimensions of NTU and HETP are by far out of the

micro range[1]. Some devices and procedures were developed to overcome these scaling drawbacks, e.g. membrane or mesh supported distillation [2], with carrier gas co- or counter flow

[3,4], or within micro capillaries [5]. As special device a fast rotating spiral (up to 5,000 rpm) was used to achieve good segregation of the of the gas and liquid phases by induced

centrifugal forces [6]. Also a so-called zero gravity procedure, i.e. horizontal heat-pipe distillation is described in literature [7]. Nevertheless, a real application for distillation with

microstructured devices is still missing [8]. Removing a volatile solvent from a reaction mixture with a rotary evaporator is a common and very often used separation procedure. Rotary

evaporators allow continuous feeding with the reaction mixture and the subsequent stripping of the solvent. To transfer these advantages to the micro scale, an electrically heated falling

film device is connected to an actively cooled microstructured counter part, separated by spacers which ensure a stable distance between the two parts. The condensation of the

evaporated liquids is realized with a sustainable heat pipe system, which provides dynamic cooling temperatures depending on the heat to be dissipated [9].

Introduction

Wetting behaviour of the washboard structure
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Microfluidic devices are suitable for performing continuous evaporation of volatile substances , e.g. products, solvents or the excesses of

reactive substances

Stripping of solvents (VOC) allows to remove them from a non-volatile matrix, e.g. a complete removal of ethyl acetate from an Ionic Liquid 

(not shown here) or to concentrate target molecules from large volume.

A distillation in its true sense, i.e. the separation of substances with small differences of their boiling points, could not be performed

sufficiently. 

Summary
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Design of the stripping device
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Convection, non-equilibrium?

For saturation vapor pressure/condensation -

Clausius-Clapeyron:
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For vapor composition of (ideal) 

binary mixtures/partial gas pressure – Raoult

𝑝𝐴
′ = 𝑝𝐴

′′ = 𝑥𝐴
′ ∙ 𝑝𝐴 ∗

(‘ = liquid phase/vapor pressure, ‘’ = gas phase/partial gas pressure)

Assumption: evaporation of a 50/50 mol% binary solution of cyclohexane and toluene at 70°C. Condensation on the cooling

plate at 45°C. The condensate does not have a 50/50 ratio, therefore, the partial pressures of liquid and gas phases are not

equal. To achieve identical partial pressures, some toluene vapor has to be condensate as well as cyclohexane has to

evaporated. The resulting set of non-linear equations of 2nd order can be solved by numerical calculation procedures.

Experiment: = 0.667 Calculation: = 0.568 thermodynamic equilibrium not achieved
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Washboard wetted with a 0.12 mol L-1 KSCN solution and subsequent feeding of a 

0.04 mol L-1 FeCl3 solution with a flow rate of 0.5 mL min-1 The colour change indicates the flow profile

Equilibrium calculation

Stripping of ethanol – proof of principle Stripping of a binary mixture of cyclohexane / toluene
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