

Cruciform Precursor Synthesis Pathways – From Batch to Flow Processes

IMRET14, Beijing 2016

Dominik Karl¹, Pia Börner², Holger Löwe¹

¹ Fraunhofer ICT-IMM, Center for Applied Fluidics and Engineering, Duesbergweg 10-14, 55128 Mainz ² Johannes Gutenberg University, Duesbergweg 10-14, 55128 Mainz

Cruziforms

JGU JOHANNES GUTENBERG UNIVERSITÄT MAINZ

So-called "cruciforms" consist of two conjugated p-systems (blue and red), which form a cross-like structure.

They are commonly used as fluorescent materials for optoelectronics. The central **aromatic core** of theses substances often consists of condensed heteroaromatics, such as benzobisimidazoles.

Only obtainable as a byproduct with 12-30% yield!

Microfluidics as a solution?

R FOR APPLIED FLUIDICS

Flow chemistry should be a solution to problems in batch chemistry and aim to improve the "problem childs"

What Can Flow Chemistry Offer?

T. Noël, S. Kuhn, A. Musacchio, K. Jensen, S. Buchwald, Angewandte Chemie Int Ed 2011, 50, 5943–5946.

M. Hopkin, I. Baxendale, S. Ley, Chem. Commun. 2010, 46, 2450-2452.

Synthesis Pathway

Nitration of 1,3-Dichlorobenzene

Nitration of 1,3-Dichlorobenzene

Novel Process Windows

Kinetically Controlled Reactions

Steric hindrance leads to higher energy barriers

1,4-addition is kinetically favored

Kinetically Controlled Reactions

.NH₂

'NH₂

4

FR: 150 µL min⁻¹

4, 14 eq NEt3 in MeCN

FR: 150 µL min⁻¹

 H_2N

 H_2N

Evolution of a Reaction Setup

ĊI C

Me₂N⁺NMe₂

0°C, 75 min, 0%

5

ice bath

(((())))

AD 1/8", V = 22.5 mL I

collection flask

Me₂N[.]

Ĥ

6

·NMe₂

5, 2 eq in MeCN

low temperatures fast mixing

Knauer SmartMix CENTER FOR APPLIED FLUIDICS AND ENGINEERING

Evolution of a Reaction Setup

.NH₂

'NH₂

4

 H_2N

 H_2N

CI CI

Me₂N⁺NMe₂

0°C, 75 min, 0%

5

Me₂N[.]

Ĥ

6

NMe₂

low temperatures fast mixing

solvent changes led to side reactions

Me₂N₊NMe₂

С

NH₂

Me₂N.

 H_2N

 H_2N

_NMe₂

Evolution of a Reaction Setup

low temperatures fast mixing short tubing

JGI **Evolution of a Reaction Setup** ER FOR APPLIED FLUIDICS AND ENGINEERING JOHANNES GUTENBERG UNIVERSITÄT MAINZ 5 is the mixing .NH₂ H_2N Me₂N NMe₂ speed too slow? Me₂N NMe₂ H_2N NH₂ 0°C, 2 h, 54% low temperatures high flow rates FR: 500 µL min⁻¹ inert atmosphere fast mixing short tubing ultrasonic bath short piece RT of tubing 4, NEt₃, in MeCN N_2 54% yield (4 times the batch yield) FR: 500 µL min⁻¹ **CPMM-300** higher mixing efficiency ice bath 2 eq 5 in MeCN no clogging the solution is stirred after exiting the reactor

Evolution of a Reaction Setup

Summary

	Step	Reaction	time	yield	time	yield	
-	1	electroph. subst.	4 h	70%	1.2 min	72%	
	2	nucleoph. subst.	3 h	80%	15 min	50%	Not optimized
	3	hydrogenation	//	//	//	//	
	4	nucleoph. addition ring closure	24 h	12%	30 min	65%	
		Σ	31 h	7%	47 min	23%	

Switching to flow systems resulted in vastly improved reaction parameters!

A four step batch synthesis was transferred to a flow system.

Each step could have consisted of standard operations, but a specifically tailored approach generated bigger payoffs.

The reaction to 1,4-bis-[N,N,N',N'-tetramethylguanidino]-2,5-diaminobenzene was not controllable in batch. Only fast mixing and heterogeneous flow in micro flow made the reaction feasible.

Thank you!

Pia Börner, M.Sc

Pia single handedly developed and improved the process and setups for the key step.

(and is looking for a PhD position starting early 2017)

