

Immiscible, or Thermomorphous Phases in Double Emulsions

Application of Droplet-based Microfluidics with Unusual Solvents

Holger Loewe^{1,3*}, Viktor Misuk¹, Andreas Mai², Julian Heinrich¹, Daniel Rauber¹

- 1 Johannes Gutenberg-University Mainz, Duesbergweg 10-14, D-55128 Mainz, Germany
- 2 University of Technology, Darmstadt; Petersenstr. 30, D-64287 Darmstadt, Germany
- 3 Fraunhofer ICT-IMM, Carl-Zeiss-Str. 18-20, 55129 Mainz, Germany

* loewe@uni-mainz.de

Outline

- Introduction continuous flow vs. droplet flow
- Heck- C-C coupling in thermomorphous double emulsions

(fluorous triphasic catalysis)

- Carbene chemistry (if some time will be left)
- Summary

Microfluidics – choice of flow

Droplet flow – residence time distribution

0.2

0.3

0.4

0.5

0.6

0.7

0.9

1

0.8

Droplet generation and flow behavior

Droplet generation - coaxial **t** configuration

3-phase double emulsion droplet in flow:

Droplet: FC40 / toluene

Continuous phase: water

Optical monitoring of droplet flow by a light barrier sensor:

- red peaks indicate droplets
- frequency < 0.5 Hz

control of flow behavior, residence time and droplet size

manipulation of droplets

Palladium catalyzed C-C cross coupling reactions in thermomorphous double emulsion droplets – Fluorous Triphasic Catalysis (FTC)

Similar to Horvath, I. T., Rabai, J.; *Science 266, 5182 (1994) 72-75.* (Fluorous Biphasic Catalysis in batch)

Heck C – C coupling: reaction mechanism

Richard Fred Heck, John Paul Nolley jr. : J. Org. Chem. 37, Nr. 14, 1972

Palladium catalyzed C-C cross coupling reactions in thermomorphous double emulsion droplets

Process Technology

CMPT Chemical Micro

Catalyzed by Pd containing lonic Liquid dissolved in Fluorinert[®] FC-40

Catalyst

Setup: double emulsion droplet generatorcoaxial fraction - fluid connection

Modular capillary tube-in-tube-in-tube setup: 2 x Stainless steel T-junctions 1000 μm ID Core capillary, PEEK, OD = 360 μm and = 150 μm. Middle capillary, FEP, OD = 1/32^{''}, ID = 500 μm. Outer capillary, PTFE, OD = 1/16^{''}, ID = 1,000 μm.

Flow rates from nl h⁻¹ to ml min⁻¹ possible

Setup I: double emulsion droplet generatorcoaxial from configuration: openFOAM[®]-simulation

CP: continuous phase (aqueous phase)

DP1: core droplet phase perfluorinated phase

DP2: shell droplet phase organic phase

slug flow

without surfactants

slug dimension depends on channel

diameter and flow of continuous phase

Achievable specific surface area

CMPT Chemical Micro

Core diameter [µm]

Setup II: double emulsion droplet generatorcoaxial to configuration with flow focusing

Temperature controlled mixing – phase separation by a thermomorphous solvent

Experimental setup - overview

Setup: residence time unit

HECK C–C coupling reaction

S. Schneider, W. Bannwarth: Angew. Chem. Int. Ed. 39. 2000. Nr.22 4142

Fluorous Triphasic Catalysis (FTC) in double emulsion droplets

(Similar to Horvath, I. T., Rabai, J.; Science 266, 5182 (1994) 72-75)

Heck C – C coupling: reaction mechanism

Heck C – C coupling: reaction mechanism

Phase separation and catalyst recycling

Heck - coupling of bromobenzene: results

Heck - coupling of bromo- and chlorobenzene: results

fixed length of capillary

IGIU

JOHANNES GUTENBERG

Synthesis of cyclopropanes with highly reactive carbenes as intermedates – single droplets

Formation of carbenes Cl₂C|

Droplet generator

Fluid-fluid interface in µ-channels

Slow performing system

Continuous phase 0.05 m s⁻¹ Dispersed phase 0.0025 m s⁻¹ Oscillation droplet generation due to slow flow rates. Simulation with openFoam[™]

Carbene formation – batch vs. droplet based processing: Comparison of interfacial areas

JOHANNES GUTENBERG UNIVERSITÄT MAINZ

 $d_D = approx. 80 \ \mu m$

 $A = 2*10^{-8}m^2 - 7.85*10^{-9}m^2$

V = 2.6 *10⁻¹³ m³ - 6.5*10⁻¹⁴ m³

 $A_{S} = 75000 \text{ m}^{2}/\text{m}^{3} - 120000 \text{ m}^{2}/\text{m}^{3}$

Fast performing system

Continuous phase 0.05 m s⁻¹ Dispersed phase 0.0025 m s⁻¹

Stirred batch tank

 $A_s = 100m^2m^{-3} - 1000 m^2m^{-3}$

Synthesis of 7,7-dichlorobicyclo[4.1.0]heptane (7,7-dichlorobicyclo[4.1.0]heptane (7,7-dichloronorcaran) in droplet-based continuous flow

Summary

- Heck –reaction can be performed in a 3-phase continuous droplet flow process.
 Thermomorphous solvents shift to a 2-phase process at elevated temperatures
 Coupling reaction and catalyst reactivation are performed at the same time
- Stilbene yields of 96% could be achived with bromobenzene within 18 minutes The catalyst could be separated and reused many times without loss of activity At the same conditions chlorobenzene gives approx. 36% yield within 60 minutes, with 10-times higher catalyst concentration the yield could be increased up to 75%
 - 7,7-dichloronorcaran (cyclopropanes) were synthesized from carbenes by a continuous droplet-flow mode
 High yields (89%) could be achieved within a few seconds residence time
 Vigorously stirred batch gave approximately 75% within 3 hours